If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7s^2+36s=0
a = 7; b = 36; c = 0;
Δ = b2-4ac
Δ = 362-4·7·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-36}{2*7}=\frac{-72}{14} =-5+1/7 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+36}{2*7}=\frac{0}{14} =0 $
| 175-x=292 | | -14=v/2-4 | | 11=u/2-12 | | (-2/3)(w-4/9)=-4.5 | | 11/3=y/3 | | 7y-4=14y+45 | | 3n=4n-2=61 | | 5(10x+50)=700 | | 4(-x+4)-5x=-65 | | -1=4w+5 | | a²+9²=12² | | 7y-4=13y+32 | | 2/3(6x+3)=70 | | 3x-3+6=2(x+2)+1 | | 3(6x-4x)=150 | | 3(6x-7)=42 | | 3=11+b | | 11m-34=87 | | v+10=13-12/v | | 8(x+3/4)=22 | | 2x–5–7x=35 | | 8/9k=40/1 | | 4(2x+14)=64 | | 7t-42=49 | | 4(x-3)=x+7-7x | | x-7+15x=8 | | 15x+1=299 | | 60+3x=300 | | 3+(1/4x)=31 | | 3+(1/4)x=31 | | 81+b+67=180 | | 109=12x+1 |